Tables TABLE 4.1 INITIAL ICM PERFORMANCE DATA ### Former Amphenol Site Franklin, Indiana | | Top of | Initial Condi | tions, 2/14/95 | 2/16/95 | o 2/23/95 | 2/23/95 to 3/2/95 | | Change in | |---------|------------|---------------|----------------|----------|-------------|-------------------|-------------|-----------| | | Casing | Depth to | Water | Depth to | Water | Depth to | Water | Water | | | Elevation | Water | Elevation | Water | Elevation | Water | Elevation | Elevation | | Well ID | (feet, MSL | (feet) | (feet, MSL) | (feet) | (feet, MSL) | (feet) | (feet, MSL) | (feet) | | IT-2 | 732.25 | 13.00 | 719.25 | 13.25 | 719.00 | 13.15 | 719.10 | -0.15 | | IT-3 | 728.71 | 11.10 | 717.61 | 11.20 | 717.51 | 11.18 | 717.53 | -0.08 | | MW-3 | 736.44 | 16.53 | 719.91 | 16.55 | 719.89 | 16.49 | 719.95 | +0.04 | | MW-9 | 733.04 | 12.11 | 720.93 | 11.82 | 721.22 | 11.80 | 721.24 | +0.31 | | MW-12 | 736.38 | 17.06 | 719.32 | 17.28 | 719.10 | 17.27 | 719.11 | -0.21 | | MW-20 | 734.03 | n/a | MW-21 | 737.91 | 18.06 | 719.85 | 18.03 | 719.88 | 18.02 | 719.89 | +0.04 | | MW-22 | 737.64 | 17.97 | 719.67 | 18.03 | 719.61 | 18.12 | 719.52 | -0.15 | | MW-24 | 736.02 | 16.55 | 719.47 | 16.85 | 719.17 | 16.55 | 719.47 | 0.0 | | MW-26 | 736.39 | 15.48 | 720.91 | 15.81 | 720.58 | 15.19 | 721.20 | +0.29 | | MW-27 | 736.63 | 16.76 | 719.87 | 16.54 | 720.09 | 16.60 | 720.03 | +0.16 | | MW-28 | 738.04 | 18.27 | 719.77 | 18.18 | 719.86 | 18.21 | 719.83 | +0.06 | | MW-29 | 737.61 | 18.03 | 719.58 | 17.92 | 719.69 | 17.92 | 719.69 | +0.11 | | MW-30 | 734.84 | 15.74 | 719.10 | 15.70 | 719.14 | 15.72 | 719.12 | +0.02 | #### Notes: - (1) RW-1: Pumped approximately 5,760 gallons during the time period 2/16/95 to 3/2/95. - (2) RW-2: Pumped approximately 65,047 gallons (3.3 gpm) during the time period 2/16/95 to 3/2/95. - (3) RW-3: Pumped approximately 110,993 gallons (5.5 gpm) during the time period 2/16/95 to 3/2/95. - (4) n/a data not available TABLE 5.1 GROUNDWATER AND SOIL ARARS ### Former Amphenol Site Franklin, Indiana | | Final Risk-Based | Final Risk-Based | Maximum | Maximum | RCRA S | nbpart S | |-----------------------|------------------------|------------------|-------------|-------------|--------------|-------------| | | PRG | PRG | Contaminant | Contaminant | Action I | cyels (P) | | Chemical | Concentrations | Concentrations | Level (MCL) | Level | | Ground | | Circuman | for Soll (residential) | for Ground Water | (ug/L) | Goal (MCLG) | Soll | Water | | | | | inan | | | *** | | | (mykg) | (ug/L) | | (ug/L) | (mg/kg) | (ug/L) | | Acetone | 27400 | 3650 | #N/A | #N/A | 8000 | 4000 | | 2-Butanone | 164000 | 2500 | #N/A | #N/A | 50000 | 20000 | | Carbon tetrachloride | 4.91 | 0.259 | 5 | Zero | 5 | MCL | | Chloroform | 105 | 0.275 | 80(T) | Zero | 100 | MCL | | 1,1-Dichloroethane | 27400 | 768 | #N/A | #N/A | 8000 | 4000 | | 1,1-Dichloroethylene | 1.06 | 0.0167 | 7 | 7 | 10 | MCL | | 1,2-Dichloroethene | 2460 | 329 | 70(cis) | 70(cis) | 700 | MCL | | Methylene Chloride | 85.2 | 6.31 | 5 | Zero | 90 | MCL | | 4-Methyl-2-pentanone | 21900 | 183 | #N/A | #N/A | 6000 | 3000 | | Tetrachloroethene | 12.3 | 1.43 | 5 | Zero | 10 | MCL | | Toluene | 1.6 | 0.213 | 1000 | 1000 | 2 | MCL | | 1.1.1-Trichloroethane | 24600 | 1550 | 200 | 200 | 7000 | MCL | | Trichloroethene | 58.1 | 2.54 | 5 | Zero | 60 | MCL | | Xylene, total | 548000 | 73000 | 10000 | 10000 | 200000 | MCL | | Aluminum | #N/A | #N/A | 50(S) | #N/A | #N/A | #N/A | | Antimony | 110 | 14.6 | 6 | 6 | 30 | MCL | | Arsenic | 0.355 | 0.0473 | 50(U) | #N/A | 0.4 | MCL | | Barium | 19200 | 2560 | 2000 | 2000 | 5000 | MCL | | Bervllium | 0.149 | 0.0198 | 4 | 4 | 0.2 | MCL | | Cadmium | 137 | 18.3 | 5 | 5 | 40 | MCL | | Calcium | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | | Chromium, VI | 1370 | 183 | 100(total) | 100(total) | 400 | MCL | | Cobalt | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | | Copper | 10200 | 1350 | 1300(A) | 1300 | 3000 | MCL | | Cyanide | 5480 | 730 | 200(P) | 200(P) | 2000 | 700 | | Iron - | #N/A | #N/A | 300(S) | #N/A | #N/A | #N/A | | Lead | #N/A | #N/A | 15(A) | Zero | #N/A | MCL | | Magnesium | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | | Manganese | 1370 | 183 | 50(S) | #N/A | 10000 | 700 | | | 82.1 | 11 | 2 | 2 | 20 | MCL | | Mercury | 5480 | 730 | 100 | 100 | 2000 | MCL | | Nickel | 5480
#N/A | /30
#N/A | #N/A | #N/A | 2000
#N/A | MCL
#N/A | | Potassium | #N/A
1370 | #N/A
183 | #N/A
50 | #N/A
50 | #N/A
400 | #N/A
MCL | | Selenium | 1370 | 183 | 100(S) | 30
#N/A | 400
400 | MCL
200 | | Silver | | | | | | | | Sodium | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | | Thallium | 21.9 | 2.92 | 2 | 0.5 | 6 | MCL | | Tin | 164000 | 21900 | #N/A | #N/A | 50000 | 20000 | | Vanadium | 1920 | 256 | #N/A | #N/A | 500 | 200 | | Zinc | 82100 | 11000 | 5000(S) | #N/A | 20000 | 10000 | #N/A = Not available ARAR = Applicable or Relevant and Appropriate Requirements. PRG = Preliminary Remediation Goal (health-based). (P)=Proposed (S)=Secondary standard (A)=Action Level (U) = Under review. (T) = this value for total trihalomethanes. (U) = Under review. MCLs and MCLGs are from "Drinking Water Regulations and Health Advisories", U.S. EPA, May 1994. Action Levels were calculated according to the recommended assumptions given in the propsed Subpart S rules. TABLE 5.2 INITIAL SCREENING OF REMEDIAL TECHNOLOGIES | Environmental
Media | General Response
Action | Remedial
Technology | Process
Option | Retain For
Further
Analysis | Screening
Comments | |------------------------|----------------------------|------------------------|-----------------------------|-----------------------------------|--| | Soils | No Action | None | Not Applicable | Yes | The No Action Alternative will be carried through to the Detailed Analysis of Alternatives. | | | Institutional Action | Access Restriction | Deed Restrictions | Yes | Restrictions on excavation and soil use in impacted areas may be applicable. Must be coordinated with property owner(s) and public agencies. | | | | | Site Fencing | No | Impacted soils are mainly at a depth of >15 feet.
Restricting access to site will not affect potential
contact with impacted soils. | | | | Monitoring | Soil Monitoring | Yes | On-going monitoring of site soils may be applicable. | | | Surface Water | Surface Controls | Grading | No | Site already graded for runoff control. | | | Diversion | | Soil Cover/
Revegetation | No | Site already has vegetative cover or paving. | | | | | Flood Control
Dikes | No | Not necessary due to site elevation and stratigraphy. | TABLE 5.2 INITIAL SCREENING OF REMEDIAL TECHNOLOGIES | Environmental
Media | General Response
Action | Remedial
Technology | Process
Option | Retain For
Further
Analysis | Screening
Comments | |------------------------|----------------------------|---------------------------|---|-----------------------------------|--| | Soils
(cont.) | Containment | Capping
(single layer) | Synthetic Membrane | : No | May minimize surface water infiltration,
but will not affect groundwater flow
through impacted soil. | | | | | Natural Soil | No | Site already has natural soil cover. | | | | | Clay | No
but will not a | May minimize surface water infiltration, affect groundwater flow through impacted soil. | | | | | Asphalt | No | May minimize surface water infiltration, but will not affect groundwater flow through impacted soil. | | | | | Concrete | No | May minimize surface water infiltration, but will not affect groundwater flow through impacted soil. | | | | Capping
(multi-layer) | Multimedia | No | May minimize surface water infiltration,
but will not affect groundwater flow
through impacted soil. | | | | Vertical Barriers | Slurry Wall | No | Hydrogeology and vertical extent of groundwater site will limit the effectiveness of a slurry wall. | | | | | Vibrating Beam
Bitumen Grout
Wall | No | Forms barrier with uncertain integrity due to difficulty in scaling base of wall. | TABLE 5.2 INITIAL SCREENING OF REMEDIAL TECHNOLOGIES | Environmental
Media | General Response
Action | Remedial
Technology | Process
Option | Retain For
Further
Analysis | Screening
Comments | |------------------------|----------------------------|---------------------------|--------------------------|-----------------------------------|---| | Soils | Containment | Vertical Barriers (cont.) | Grout Curtain | No | Forms barrier of uncertain integrity. | | (cont.) | (cont.) | (cont.) | Metallic Sheet | No | Presence of storm and sanitary sewers in area will not allow driving of sheet pile. | | | | | Concrete Wall | No | Freeze/thaw stresses will cause cracking of concrete, producing a barrier of uncertain integrity. | | | | | Clay Wall | No | May be effective in limiting migration of contaminants from source area. | | | | Horizontal Barriers | Block Displacemen | t No | Horizontal barrier is not beneficial for impacted soil below the water table where there is lateral groundwater movement. | | | | | Injection
Grouting | No | Horizontal barrier is not beneficial for impacted soil below the water table where there is lateral groundwater movement. | | | Removal | Excavation | Mechanical
Excavation | Yes | Localized excavation of impacted soils may be effective; either independently or coupled with other technologies. Most impacted soils are at depths >15 feet. | | | | | Consolidation | No | Estimated volumes of soils and type of contamination inappropriate for consolidation. | TABLE 5.2 INITIAL SCREENING OF REMEDIAL TECHNOLOGIES | Environmental
Media | General Response
Action | Remedial
Technology | Process
Option | Retain For
Further
Analysis | Screening
Comments | |------------------------|----------------------------|------------------------|---------------------------------------|-----------------------------------|--| | Soils
(cont.) | On-site Treatment | Thermal Oxidation | Rotary Kiln | No | Volume of impacted soil is too small for on-site incineration. | | | | | Liquid Injection | No | Not applicable due to contaminant characteristics. | | | | | Fluidized Bed | No | Not applicable due to contaminant characteristics. | | | | | Infrared | No | Volume of impacted soil is too small for on-site incineration. | | | | Direct
Treatment | Aeration | Yes | May be effective in removing contaminants from soil. | | | | | Slurry
Degradation | No | Inappropriate due to contaminant characteristics. | | | | | Low Temperature
Thermal Desorption | Yes
n | May be effective in removing contaminants from soil. | | | | | Soil Washing | No | Inappropriate due to volatile nature of contaminants. | TABLE 5.2 INITIAL SCREENING OF REMEDIAL TECHNOLOGIES | Environmental
Media | General Response
Action | Remedial
Technology | Process
Option | Retain For
Further
Analysis | Screening
Comments | |------------------------|----------------------------|------------------------|----------------------------------|-----------------------------------|---| | Soils
(cont.) | On-Site Treatment (cont.) | In-Situ Treatment | Microbial
Degradation | No | Lack of performance data on chlorinated contaminants. | | | | | Oxidation (chemical detox | No
ification) | Inappropriate due to aromatic nature of contaminants. | | | | | Stabilization/
Solidification | No | Inappropriate due to contaminant characteristics. | | | | | Soil Flushing | Yes | May be effective in enhancing removal of contaminants from soil matrix. | | | | | Soil Aeration | Yes | May be effective in removing contaminants from soil matrix. | | | | | Soil Vapor
Extraction | Yes | May be effective in removing contaminants from soil matrix. | | | | | Vitrification | No | Cannot be implemented due to site conditions, high water table. | TABLE 5.2 INITIAL SCREENING OF REMEDIAL TECHNOLOGIES | Environmental
Media | General Response
Action | Remedial
Technology | Process
Option | Retain For
Further
Analysis | Screening
Comments | |------------------------|----------------------------|-------------------------------|-------------------|-----------------------------------|---| | Soils
(cont.) | Off-Site Treatment | RCRA Incineration | Incineration | Yes | Incineration may be required for off-site disposal. | | | On-Site Disposal | RCRA Landfill Construction | Not Applicable | No | Physical location of site makes it inappropriate for constructing a landfill. | | | | Type II Landfill Construction | Not Applicable | No | Physical location of site makes it inappropriate for constructing a landfill. | | | Off-Site Disposal | RCRA Landfill | Not Applicable | No | Incineration required prior to disposal. RCRA landfill is not required. | | | | Type II
Landfill | Not Applicable | Yes | Following incineration, soil can be disposed of in a Type II landfill. | TABLE 5.2 INITIAL SCREENING OF REMEDIAL TECHNOLOGIES | Environmental
Media | General Response
Action | Remedial
Technology | Process
Option | Retain For
Further
Analysis | Screening
Comments | |------------------------|----------------------------|------------------------|-----------------------------|-----------------------------------|---| | Groundwater | No Action | None | Not Applicable | Yes | The No Action Alternative will be carried through to the Detailed Analysis of Alternatives. | | | Institutional Action | Access Restriction | Deed Restrictions | Yes | Deed restrictions on well installation and groundwater use may be appropriate. | | | | | Site Fencing | No | Site fencing will not restrict groundwater exposure. | | | | Monitoring | Groundwater
Monitoring | Yes | On-going monitoring of on-site and off-site wells may be applicable. | | | Surface Water
Diversion | Surface Controls | Grading | No | May be applicable if soil excavation is utilized, but will not affect groundwater flow through impacted soil. | | | | | Soil Cover/
Revegetation | No | Site already has vegetative cover or paving. | | | | | Flood Control
Dikes | No | Not necessary due to site elevation and stratigraphy. | TABLE 5.2 INITIAL SCREENING OF REMEDIAL TECHNOLOGIES | Environmental
Media | General Response
Action | Remedial
Technology | Process
Option | Retain For
Further
Analysis | Screening
Comments | |------------------------|----------------------------|---------------------------|-------------------------------------|-----------------------------------|---| | Groundwater (cont.) | Containment | Capping
(single layer) | Synthetic
Membrane | No | May minimize surface water infiltration, but will not impact upstream recharge of groundwater and leaching of contaminants. | | | | | Clay | No | May minimize surface water infiltration,
but will not impact upstream recharge of
groundwater and leaching of contaminants. | | | | | Asphalt | No | May minimize surface water infiltration,
but will not impact upstream recharge of
groundwater and leaching of contaminants. | | | | | Concrete | No | May minimize surface water infiltration, but will not impact upstream recharge of groundwater and leaching of contaminants. | | | | Capping
(multi-layer) | Multimedia | No | May minimize surface water infiltration, but will not impact upstream recharge of groundwater and leaching of contaminants. | | | | Vertical Barriers | Slurry Wall | No | Hydrogeology of the site would limit the effectiveness of a slurry wall. | | | | | Vibrating Beam
Bitumen Grout Wal | No
I | Forms barrier of uncertain integrity, due to difficulty in sealing base of wall. | | | | | Grout Curtain | No | Forms barrier of uncertain integrity. | TABLE 5.2 INITIAL SCREENING OF REMEDIAL TECHNOLOGIES | Environmental
Media | General Response
Action | Remedial
Technology | Process
Option | Retain For
Further
Analysis | Screening
Comments | |------------------------|----------------------------|--------------------------------|--------------------------------------|-----------------------------------|---| | Groundwater (cont.) | Containment
(cont.) | Vertical Barriers
(cont.) | Metallic Sheet
Piling | No | Presence of storm and sewers in area will not allow driving of sheet pile. | | | | | Concrete wall | No | Subject to cracking due to freeze/thaw stresses. | | | | Horizontal
Barriers | Block Displacement | No | Horizontal barrier is not effective for lateral groundwater movement. | | | | | Grout Injection | No | Technology not sufficiently developed. Produces a barrier of uncertain integrity. | | | | Gradient Controls | Barrier Wells | Yes | May be effective in containing groundwater and/
or lowering the groundwater table level. | | | | | Interceptor Trenches
Drains/Sumps | s/ No | Site geology is more conducive to groundwater diversion via wells. | | | Collection | Extraction | Extraction Wells | Yes | May be an effective method of collecting groundwater for treatment and/or lowering the groundwater table level. | | | | Passive Collection | Interceptor Trenches
Drains/Sumps | s/ No | Site geology is more conducive to groundwater collection via wells. | | | On-Site Treatment | Biological Treatment (Aerobic) | Activated Sludge | No | Aerobic biological treatment of chlorinated VOCs is not well documented or effective unless a cosubstrate is available. | TABLE 5.2 INITIAL SCREENING OF REMEDIAL TECHNOLOGIES | Environmental
Media | General Response
Action | Remedial
Technology | Process
Option | Retain For
Further
Analysis | Screening
Comments | |------------------------|----------------------------|--|----------------------------------|-----------------------------------|--| | Groundwater
(cont.) | On-Site Treatment (cont.) | Biological Treatment (aerobic) (cont.) | Trickling Filters | No | Aerobic biological treatment of chlorinated VOCs is not well documented or effective unless a co-substrate is available. | | | | | Rotating Biological (Contractor) | No | Aerobic biological treatment of chlorinated VOCs is not well documented or effective unless a cosubstrate is available. | | | | | Aerated Lagoons | No | Aerobic biological treatment of chlorinated VOCs is not well documented or effective unless a cosubstrate is available. | | | | Biological Treatment (anaerobic) | Anaerobic
Digestion | No | Has been shown to dechlorinate contaminants, but may require additional treatment. | | | | | Anaerobic
Fluidized Bed | No | Has been shown to dechlorinate contaminants, but may require additional treatment. | | | | Biophysical
Treatment | PACT Treatment | No | Aerobic biological treatment of chlorinated VOCs is well documented or effective unless a cosubstrate is available. | | | | | Aerobic Carbon
Fluidized Bed | No | Aerobic biological treatment of chlorinated VOCs is well documented or effective unless a cosubstrate is available. | | | | Chemical Treatment | Neutralization | No | Not applicable due to contaminant characteristics. | | | | | Precipitation | No | Not applicable due to contaminant characteristics. | TABLE 5.2 INITIAL SCREENING OF REMEDIAL TECHNOLOGIES | Environmental
Media | General Response
Action | Remedial
Technology | Process
Option | Retain For
Further
Analysis | Screening
Comments | |------------------------|----------------------------|----------------------------|-------------------------------|-----------------------------------|--| | Groundwater (cont.) | On-Site Treatment (cont.) | Chemical Treatment (cont.) | Dechlorination | No | Has been shown to be effective, but would require additional treatment. | | | | | Oxidation | No | Technology is appropriate but prohibitively expensive. | | | | | UV Enhanced Oxidation | No | Technology is appropriate but prohibitively expensive. | | | | | Reduction | No | Not applicable due to contaminant characteristics. | | | | Physical Treatment | Coagulation/
Sedimentation | No | Not applicable due to contaminant characteristics. | | | | | Carbon Adsorption | Yes | Proven effective in removing VOCs. | | | | | Activated Alumina Adsorption | No | Not applicable due to nature of contamination. | | | | | Ion Exchange | No | Not applicable due to nature of contamination. | | | | | Reverse Osmosis | No | Not applicable due to nature of contamination. | | | | | Air Stripping | Yes | Proven effective in removing VOCs. | | | | | Steam Stripping | No | Effective in removing VOCs, but air stripping would prove more cost effective. | | | | | Filtration | No | Not applicable due to nature of contamination. | | | | | Dissolved Air
Flotation | No | Not applicable due to nature of contamination. | TABLE 5.2 INITIAL SCREENING OF REMEDIAL TECHNOLOGIES | Environmental
Media | General Response
Action | Remedial
Technology | Process
Option | Retain For
Further
Analysis | Screening
Comments | |------------------------|----------------------------|---------------------------------------|--|-----------------------------------|---| | Groundwater (cont.) | On-Site Treatment (cont.) | Physical Treatment (cont.) | Extraction | No | Generates additional contamination in wastewater stream. Inefficient means of water treatment. | | | | | Solar Evaporation | No | Not applicable due to site conditions and nature of contamination. | | | | | Spray Evaporation | No | The No Action Alternative will be carried through to the Detailed Analysis of Alternatives. | | | Effluent Disposal | Publicly owned treatment works (POTW) | Not Applicable | Yes | May be appropriate for disposal of groundwater. | | | | Direct Discharge | Not Applicable | Yes | May be appropriate if contaminant levels are sufficiently reduced. Requires NPDES permit. | | | | Reinjection for
Soil Flushing | Injection Wells or
Reinfiltration Galle | Yes
cries | May be appropriate if contaminant levels are sufficiently reduced. Requires reinjection permit or permit exemption. | | | | In-Situ Treatment | Microbial Degrada | tion No | Lack of performance data on chlorinated contaminants. | | | | | Chemical Treatmer | nt No | Not applicable due to nature of contamination. | TABLE 5.2 INITIAL SCREENING OF REMEDIAL TECHNOLOGIES | Environmental
Media | General Response
Action | Remedial
Technology | Process
Option | Retain For
Further
Analysis | Screening
Comments | |------------------------|----------------------------|----------------------------|--|-----------------------------------|---| | | Off-Site Treatment | POTW | Not Applicable | Yes | May be an effective means of groundwater treatment. | | | | RCRA Facility | Not Applicable | No | Concentrations of contaminants in the ground water are not high enough to warrant this type of treatment. | | | On-Site Disposal | Deep Well Injection | Not Applicable | No | Requires installation of well through bedrock. May cause contamination of deeper aquifers. | | Air | No Action | None | Not Applicable | Yes | The No Action Alternative will be carried through to the Detailed Analysis of Alternatives. | | | Institutional Action | Access Restriction | Entry Permit
Program | Yes | May be effective in reducing potential exposure to gas in sewer lines. | | | | Monitoring | Air Monitoring/
Confined Space Test | Yes
s | On-going monitoring of site air quality and confined space monitoring of sewer air may be applicable. | | | On-Site Treatment | Gas Recovery/
Treatment | Adsorption | Yes | May be appropriate in conjunction with vapors generated by soil/groundwater treatment. | | | | | Thermal Oxidation | Yes | May be appropriate in conjunction with vapors generated by soil/groundwater treatment. | | | | | Flare | No | Marginally effective for chlorinated VOCs. | TABLE 5.3 SUMMARY OF CORRECTIVE MEASURE ALTERNATIVES # Former Amphenol Site Franklin, Indiana | Alternative
Number | Corrective Measure Technologies | |-----------------------|---| | 1 | No Action | | 2 | Institutional Controls; Monitoring | | 2A | Institutional Controls; Monitoring; Groundwater
Extraction and Treatment with Air Stripping (ICM) | | 3 | Institutional Controls; Monitoring; Groundwater
Extraction and Treatment with Air Stripping (ICM);
Groundwater Sparging; Soil Vapor Extraction | | 4 | Institutional Controls; Monitoring; Groundwater
Extraction and Treatment with Air Stripping (ICM);
Soil Excavation, Aeration, and Backfill | | 4A | Institutional Controls; Monitoring; Groundwater
Extraction and Treatment with Air Stripping (ICM);
Soil Excavation and Off-Site Disposal | | 5 | Institutional Controls; Monitoring; Groundwater Extraction and Treatment with Air Stripping (ICM); Focused Groundwater Sparging and Soil Vapor Extraction | | 6 | Institutional Controls; Monitoring; Groundwater Extraction and Treatment with Air Stripping (ICM) and Activated Carbon Polishing; Reinjection of Treated Water to Promote Soil Flushing | TABLE 6.1 EVALUATION OF CORRECTIVE MEASURE ALTERNATIVES BASED ON ABILITY TO ACHIEVE ENVIRONMENTAL, INSTITUTIONAL, AND TECHNICAL CRITERIA | <u>ananessamannan parassonan monan mon</u> | | Corrective Measure Evaluation Criteria | | | | | | | |--|---|--|---------------|-----------|-------------|---------------|--|--| | Alternative | CorrectiveMeasure Technologies | Environmental | Institutional | Technical | | | | | | | | | | Soil | Groundwater | Surface Water | | | | 1 | No Action | low | low | low | low | low | | | | 2 | Institutional Controls; Monitoring | low | high | low | low | low | | | | 2A | Institutional Controls; Monitoring; Groundwater Extraction and Treatment with Air Stripping (ICM) | high | high | moderate | high | high | | | | 3 | Institutional Controls; Monitoring; Groundwater Extraction and Treatment with Air Stripping (ICM); Groundwater Sparging; Soil Vapor Extraction | high | high | high | high | high | | | | 4 | Institutional Controls; Monitoring; Groundwater Extraction and Treatment with Air Stripping (ICM); Soil Excavation, Aeration, and Backfill | high | high | moderate | moderate | high | | | | 4A | Institutional Controls; Monitoring; Groundwater Extraction and Treatment with Air Stripping (ICM); Soil Excavation and Off-site Disposal | high | high | moderate | moderate | high | | | | 5 | Institutional Controls; Monitoring; Groundwater Extraction and Treatment with Air Stripping (ICM); Focused Groundwater Sparging and Soil Vapor Extraction | high | high | high | high | high | | | | 6 | Institutional Controls; Monitoring;
Groundwater Extraction and Treatment
with Air Stripping (ICM) and Activated
Carbon Polishing; Reinjection of Treated
Water to Promote Soil Flushing | high | high | moderate | high | high | | | Note: Evaluation is based on the liklihood of each corrective measure to meet the stated criteria. TABLE 7.1 CAPITAL AND ANNUAL OPERATING COST SUMMARY FOR CORRECTIVE MEASURE ALTERNATIVES ## Former Amphenol Site Franklin, Indiana | Alternative
Number | Corrective Measure Technologies | Capital Cost (\$)* | Annual Operating Cost (\$) | |-----------------------|---|--------------------|----------------------------| | 1 | No Action | NA | NA | | 2 | Institutional Controls; Monitoring | 24,000 | 33,000 | | 2A | Institutional Controls; Monitoring; Groundwater Extraction and Treatment with Air Stripping (ICM) | 24,000 | 76,000 | | 3 | Institutional Controls; Monitoring; Groundwater Extraction and Treatment with Air Stripping (ICM); Groundwater Sparging; Soil Vapor Extraction | 182,000 | 117,000 | | 4 | Institutional Controls; Monitoring; Groundwater Extraction and Treatment with Air Stripping (ICM); Soil Excavation, Aeration, and Backfill | 125,000 | 76,000 | | 4A | Institutional Controls; Monitoring; Groundwater Extraction and Treatment with Air Stripping (ICM); Soil Excavation and Off-Site Disposal | 1,347,000 | 76,000 | | 5 | Institutional Controls; Monitoring; Groundwater Extraction and Treatment with Air Stripping (ICM); Focused Groundwater Sparging and Soil Vapor Extraction | 119,000 | 111,000 | | 6 | Institutional Controls; Monitoring; Groundwater Extraction and Treatment with Air Stripping (ICM) and Activated Carbon Polishing; Reinjection of Treated Water to Promote Soil Flushing | 72,000 | 84,000 | ^{*} Capital costs previously incurred for the ICM are not included.